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● We train another network to invert the embeddings with a loss to reconstruct the input

○ architecture similar to a flipped embedding network, with L2 loss

● Low sample complexity: training with a single image, not pairs
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Localizing filters on the discrete rotation group

    

Conclusion

❖ We combine the power of conventional CNNs with the robustness of 
equivariant CNNs, enabling joint equivariant reasoning over multiple views.

❖ We surpass the state of the art on several 3D shape analysis benchmarks.

❖ Our code is available at https://github.com/daniilidis-group/emvn

    

EMVN on group or homogeneous spaces 
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Panoramic scene recognition (Matterport3D)

    

3D shape analysis benchmarks

[1]  A.Chang et al.  Matterport3d

SHREC’17 3D shape retrieval challenge:

Outperforms baselines by a large margin!

Modelnet classification and and retrieval:

● Convolution on homogeneous spaces:  

● Correlation on homogeneous spaces:

Variable number of input views

Henriques and Vedaldi ICML'17
Esteves et al. ICLR’18

Learning 2D-image embeddings that are equivariant to 3D object rotations.

● Our embeddings

○ enable 3D geometric reasoning from 2D inputs

○ generalize to multiple tasks, including pose estimation and novel view synthesis

● Advantages of our approach: 

○ reduced sample complexity (by avoiding training on pairs)

○ no task-specific supervision (e.g. no regression or supervision of pose)

○ training only requires a categorized collection of unaligned 3D meshes.
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Introduction

❖ Equivariant representations reduce sample and model complexity.

❖ In 3D vision, we seek equivariance to the group of 3D rotations, SO(3). 

➢ Currently, this requires specialized architecture and feature topology.

➢ State-of-the-art methods use multi-view 2D CNNs and are not equivariant.

❖ We propose a group convolutional approach to multi-view aggregation, 

enabling  joint equivariant reasoning over all views.

❖ Our model can also operate on homogeneous spaces of the rotation group.

❖ Applications to 3D shape analysis and panoramic scene classification.
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Invariant features
[1] Kanezaki et al. CVPR’18 
[2] M. Savva et al. 3DOR’17 
[3] T. Furuya et al. BMVC’16 
[4] H. Su et al.  ICCV’15 
[5] M. Yavartanoo et al. arXiv’18
[6] Haoxuan You et al. ACM’18 
[7] Z. Han et al. TIP’19 
[8] Kostantinos Sfikas C&G’18 [9] 
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MVCNN: H. Su et al.  ICCV’15 

G-CNNs: Cohen and Welling, ICML’16
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● Convolution on discrete groups:

Conventional approaches

Our approach
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We lift homogeneous space features 
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  Polar transform for in-plane rotation invariance.
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