

Introduction

- ► We consider the problem of image classification under arbitrary orientation and scale.
- Our CNN architecture learns an image representation invariant to translation and equivariant to rotation and dilation.
- ► Main contribution is the polar transformer module, which performs a differentiable log-polar transform, where the transform origin is a latent variable.

Log-polar properties

► Rotations around the origin become vertical shifts, and dilations around the origin become horizontal shifts

Method

- ► Fully convolutional polar origin predictor outputs a heatmap.
- Heatmap centroid (two coordinates) and input image go into the polar transformer module, which performs a polar transform around given origin coordinates.
- Obtained polar representation is invariant to translation.
- ► Rotations and dilations become shifts, which are handled equivariantly by a conventional classifier CNN.

Figure 2: Network architecture

Differentiable sampling from Spatial Transformer Networks (Jaderberg et al. [2015]) combined with log-polar transform. ► Wrap-around padding to account for angle periodicity.

Polar Transformer Networks Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, Kostas Daniilidis

Table 1: Rotated MNIST				Table 2: SIM2MNIST		
Model	err %	pars.	time	Model err % pars. time		
PTN-B+	1.14	129k	4.38s	PTN-S+ 5.44 35k 11.92s		
PTN-B++	0.95	129k	4.38s	PTN-B+ 5.03 134k 12.02s		
PTN-C-B+	1.01	254k	7.36s	PCNN-B+ 15.46 129k 5.33s		
PTN-C-B++	0.89	254k	7.36s	CCNN-B+ 11.73 129k 5.28s		
PCNN-B+	1.37	124k	3.30s	STN-B+ 12.35 150k 10.41s		
CCNN-B+	1.53	124k	2.98s	HNet ⁴ 9.28 44k 31.42s		
STN-B+	1.31	146k	4.57s	$\frac{1}{2}$ Thou at al [2017]		
OR-TIPooling 1	1.54	1M	_	2 Laptev et al. [2016]		
TI-Pooling ²	1.2	1M	42.9s	³ Marcos et al. [2016]		
RotEqNet ³	1.01	100k	_	⁴ Worrall et al. [2016]		

- ► State of the art on rot. MNIST and SIM2MNIST at submission.
- Compare PTN with PCNN (polar transform with fixed origin) to verify the advantages of learning the origin.
- Compare with STN (Spatial Transformer) to verify the advantages over regressing all transformation parameters.

Figure 3: Feature maps on the last convolutional layer.

- ▶ 1st and 2nd rows: 180° rotation results in a half-height vertical shift. ► 3rd and 4th rows: dilation results in a right shift.
- ▶ 1st and 3rd rows show invariance to translation.

GRASP Laboratory, University of Pennsylvania {machc, allec, xiaowz, kostas}@seas.upenn.edu

MNIST variants

Table 3: SVHN classificatio

PTN-ResNet32 (Ours) ResNet32

Cylindrical Transformer Network and ModelNet40

- heatmap; the centroid determine the axis.
- parallel axis determined by input orientation.

Figure 5: Occupancy grids and corresponding cylindrical representations.

Table 4: ModelNet40 classification (only voxel-based methods). Model

Cylindrical Transformer (C 3D ShapeNets (Wu et al. VoxNet (Maturana and So MO-SubvolumeSup (Qi et MO-Aniprobing (Qi et al.

Conclusion and final remarks

- convolutions and canonical coordinates.
- ► Check out our work on SO(3) equivariance with Spherical CNNs.

Figure 4: ROTSVHN samples.

25%	9.83%	2.09%	5.39%
2.82%	7.90%	2.85%	3.96%
5VHN	ROTSVHN	SVHN-	ROTSVHN-
on erro	r. Minus suff	ix: 6 and	9 removed.

► Axis of a cylindrical transform is learned by fixing the orientation, slicing subspace along it in channels and convolving to obtain a

► Channel-wise polar transform is then applied.

Representation is equivariant to rotations around the family of

	class acc. % inst	. acc. %
Durs)	86.5	89.9
[2015])	77.3	-
cherer [2015])	83	-
t al. [2016])	86.0	89.2
[2016])	85.6	89.9

Equivariant representations allow high accuracy with fewer parameters, faster training time and less data augmentation. ► Refer to the paper for theoretical background on group