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Relative pose estimation

● Need ground truth pose

● Pose regression (tricky)

● Train on pairs of inputs

○ high sample complexity

Novel view synthesis

● Pose embedding (tricky)

● Train on input/target pairs

○ high sample complexity

Results on ShapeNet shown by rotating one input into another based on estimated relative pose.

Real images from ObjectNet3D. Median error: 13.75 deg (ours), 36.52 deg (regression).

● We train another network to invert the embeddings with a loss to reconstruct the input

○ architecture similar to a flipped embedding network, with L2 loss

● Low sample complexity: training with a single image, not pairs
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● At test time we embed, rotate, and invert to generate novel views

● No need for pose embeddings (no MLP) or to choose a pose representation
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We can generate any novel view from any given view.
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Learning 2D-image embeddings that are equivariant to 3D object rotations.

● Our embeddings

○ enable 3D geometric reasoning from 2D inputs

○ generalize to multiple tasks, including pose estimation and novel view synthesis

● Advantages of our approach: 

○ reduced sample complexity (by avoiding training on pairs)

○ no task-specific supervision (e.g. no regression or supervision of pose)

○ training only requires a categorized collection of unaligned 3D meshes.

    

3D Equivariant Embeddings

● Our embeddings are high-dimensional, 

spherical functions

● Mapping a 2D image (Euclidean space) to 

the sphere requires a novel architecture and 

robust losses

● Supervision from a pre-trained Spherical CNN 

(3D rotation equivariant by design)

● The model produces a 3D equivariant 

embedding from a single image
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[Cohen et al, ICLR'18, Esteves et al, ECCV'18]

● Estimate relative pose by maximizing 

correlation of spherical embeddings: 

● No direct pose regression (e.g. spatial 

transformers), no pose supervision

● Can also be applied to image-mesh 

alignment

    

Conclusion

Geometric image embeddings generalize to a variety of tasks including relative pose 
estimation and novel view synthesis

Our method for 3D equivariant embeddings:
● avoids difficulties of traditional approaches, (e.g. task-specific supervision, pose 

embeddings, pose regression)
● requires only aligned image-mesh pairs at training (no alignment across meshes)

     

Cross-domain 3D equivariant image embeddings are obtained with

● fully convolutional encoder-decoder inspired by DCGAN (Radford et al, ICLR'16)

● decoder uses equirectangular projection, spherical padding

● Huber loss with weights to handle equirectangular distortions

● skip connections such as in Hourglass (Newell et al, ECCV'16) are avoided for being harmful 

when crossing domains

● supervising Spherical CNN (Esteves et al, ECCV'18) is trained only once for classification on 

ModelNet40; we show the obtained embeddings generalize to multiple tasks and datasets.

3D Equivariant Embeddings (details)
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Experiments on ShapeNet consider same-instance (SI), inter-instance (II), and 2- and 3-DOF 
relative pose. Metrics are median error in degrees, and accuracy at 15 and 30 degrees.

 

KeypointNet: Suwajanakorn et al, NIPS'18. Regression: Mahendran et al, CVPR-W'17.
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