

Abstract

Learning 2D-image embeddings that are equivariant to 3D object rotations.

- Our embeddings
- enable 3D geometric reasoning from 2D inputs
- generalize to multiple tasks, including pose estimation and novel view synthesis
- Advantages of our approach:
 - reduced sample complexity (by avoiding training on pairs)
 - no task-specific supervision (e.g. no regression or supervision of pose)
- training only requires a categorized collection of unaligned 3D meshes.

Conventional Approaches

Relative pose estimation

- Need ground truth pose
- Pose regression (tricky)
- Train on pairs of inputs
- high sample complexity

- Pose embedding (tricky)
- Train on input/target pairs • high sample complexity

3D Equivariant Embeddings

- Our embeddings are high-dimensional, spherical functions
- Mapping a 2D image (Euclidean space) to the sphere requires a novel architecture and robust losses
- Supervision from a pre-trained **Spherical CNN** (3D rotation equivariant by design)
- The model produces a 3D equivariant embedding from a **single image**

Cross-Domain 3D Equivariant Image Embeddings Carlos Esteves^{1,2} Kostas Daniilidis² Avneesh Sud¹ Ameesh Makadia¹ Zhengyi Luo² zhengyil@seas.upenn.edu machc@seas.upenn.edu asud@google.com kostas@cis.upenn.edu makadia@google.com ²University of Pennsylvania ¹Google Research **Relative Pose Estimation** 3D Equivariant Embeddings (details) Cross-domain 3D equivariant image embeddings are obtained with • Estimate relative pose by maximizing correlation of spherical embeddings: • fully convolutional encoder-decoder inspired by DCGAN (Radford et al, ICLR'16) $\arg\max_{R\in\mathbf{SO}(3)} G(R) = \sum_{k=0}^{K-1} \int_{p\in S^2} f(y_1)_k(p) \cdot f(y_2)_k(R^T p) dp$ • decoder uses equirectangular projection, spherical padding • Huber loss with weights to handle equirectangular distortions • skip connections such as in Hourglass (Newell et al, ECCV'16) are avoided for being harmful when crossing domains • supervising Spherical CNN (Esteves et al, ECCV'18) is trained only once for classification on enc1 dec1 ModelNet40; we show the obtained embeddings generalize to multiple tasks and datasets. dec1 enc1 Novel View Synthesis Loss • We train another network to invert the embeddings with a loss to reconstruct the input Results on ShapeNet shown by rotating one input into another based on estimated relative pose. \circ architecture similar to a flipped embedding network, with L₂ loss • Low sample complexity: training with a single image, not pairs enc2 dec2 dec1 enc1 Experiments on ShapeNet consider same-instance (SI), inter-instance (II), and 2- and 3-DOF Loss relative pose. Metrics are median error in degrees, and accuracy at 15 and 30 degrees. airplane a@15 85.3 Ours Regr. • At test time we embed, rotate, and invert to generate novel views 6.95 KpNet 2DOF 6.24 Ours • No need for pose embeddings (no MLP) or to choose a pose representation 20.6 38.7 Regr. 9.07 79.4 KpNe 80.9 Ours Regr. KpNet enc2 3DOF dec2 Ours 44.4 Regr. KpNet 16.3 46.0 KeypointNet: Suwajanakorn et al, NIPS'18. Regression: Mahendran et al, CVPR-W'17. enc2 dec2 Real images from ObjectNet3D. Median error: 13.75 deg (ours), 36.52 deg (regression). enc1 dec1 enc2 dec2 We can generate any novel view from any given view. Input $\mathcal{L}(x,y)$ Conclusion Pred Geometric image embeddings generalize to a variety of tasks including relative pose GT estimation and novel view synthesis Input Our method for 3D equivariant embeddings: Pred. • avoids difficulties of traditional approaches, (e.g. task-specific supervision, pose embeddings, pose regression)

GT

• requires only aligned image-mesh pairs at training (no alignment across meshes)

- No direct pose regression (e.g. spatial transformers), no pose supervision • Can also be applied to image-mesh
- alignment

		car			chair			sofa	
a@30	med.	a@15	a@30	med.	a@15	a@30	med.	a@15	a@30
91.9	3.70	92.2	92.5	5.07	90.6	94.1	4.59	93.6	95.2
68.7	6.55	83.5	93.1	13.7	53.9	78.3	17.3	43.2	69.4
91.5	div.	div.	div.	6.34	84.7	91.8	9.20	71.3	85.4
88.2	4.73	73.2	73.3	12.1	59.3	74.4	10.8	58.7	70.5
63.7	7.06	82.4	92.5	16.8	43.7	72.0	19.6	37.8	66.5
91.5	div.	div.	div.	8.07	79.5	90.2	15.1	49.8	71.8
91.9	3.84	97.3	98.8	5.55	89.1	95.7	5.21	90.4	94.8
31.3	9.83	69.0	86.5	21.7	31.3	64.3	22.2	34.8	61.4
76.6	9.12	70.4	80.9	10.8	66.7	85.3	25.0	27.4	57.3
89.4	4.59	92.1	93.3	12.3	59.5	77.3	9.66	63.9	76.0
32.1	10.5	66.5	85.6	25.6	25.1	57.2	24.5	30.9	58.1
75.0	10.7	64.4	77.6	13.6	55.4	81.6	37.4	12.7	39.8

